Problem 1. Suppose that ${\mathfrak A}$ and ${\mathfrak B}$ are two models in a language ${\mathcal L},$ such that there is a bijection $h: |\mathfrak{A}| \to |\mathfrak{B}|$, such that:

- for each constant symbol c in L, h(c^A) = c^B,
 for each n-place predicate P in L,

$$\langle a_1, ..., a_n \rangle \in P^{\mathfrak{A}} \text{ iff } \langle h(a_1), ..., h(a_n) \rangle \in P^{\mathfrak{B}},$$

 $\langle a_1, ..., a_n \rangle \in P^{\mathfrak{A}} iff \langle h(a_1), ..., h(a_n) \rangle$ • for every n-place function symbol f in \mathcal{L} , $h(f^{\mathfrak{A}})$

$$h(f^{\mathfrak{A}}(a_1,...,a_n)) = f^{\mathfrak{B}}(h(a_1),...,h(a_n)).$$

Prove that for every formula ϕ with free variables $x_1, ..., x_n$, and for every $a_1, ..., a_n$ in $|\mathfrak{A}|$, we have $\mathfrak{A} \models \phi[a_1, ..., a_n]$ iff $\mathfrak{B} \models \phi[h(a_1), ..., h(a_n)]$.

Remark 1. Such a function is called an isomorphism, and if it exists, we say that the models are isomorphic, denoted by $\mathfrak{A} \cong \mathfrak{B}$.